

Universidade Federal de Mato Grosso (UFMT) Instituto de Ciências Exatas e da Terra Departamento de Estatística

PRINCÍPIOS DE BIOESTATÍSTICA

Prof. Dr. Neuber J. Segri

Medidas de Dispersão

Medidas de Dispersão

 Também conhecidas como medidas de variabilidade.

Juntamente com as medidas de tendência central, são utilizadas para descrever um conjunto de dados.

Medidas de Dispersão (variabilidade)

Amplitude

Variância/Desvio Padrão

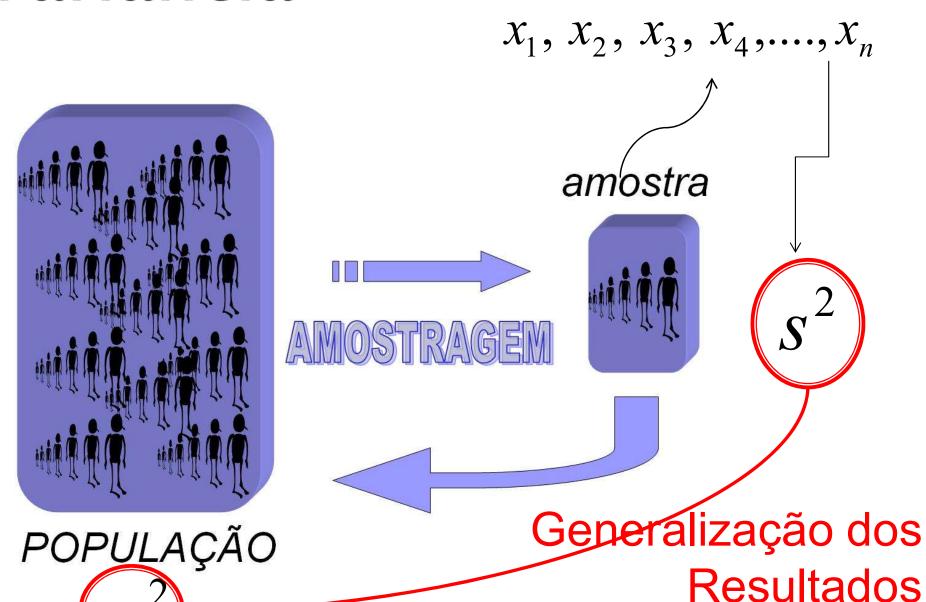
Coeficiente de Variação

Amplitude

É a diferença entre os valores máximo e mínimo de um conjunto de dados:

Amplitude = Valor Máximo - Valor Mínimo

- Definição: Mede a concentração dos dados ao redor da média.
 - Existe apenas para variáveis <u>quantitativas</u> (discretas ou contínuas).
 - Seu valor é único.
 - Não assume valores negativos.



- Definição: Mede a concentração dos dados ao redor da média.
- Variância Populacional: (σ^2)

$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}$$

Variância Amostral (s²)

Fórmula (valores individuais):

$$S^{2} = \frac{\sum_{i=1}^{n} \left(x_{i} - \overline{x}\right)^{2}}{n-1}$$

Variância Amostral

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

- Procedimento para Cálculo:
 - 1)Desvio = cada observação média

$$d_i = x_i - x$$

- 2)Elevar cada desvio ao quadrado
- 3)Somar os quadrados
- 4)Dividir o resultado por n-1

Desvio Padrão - (s)

Raiz quadrada (positiva) da Variância

$$s^2$$
 = variância $\sqrt{s^2}$ = $\sqrt{\text{variância}}$ = desvio padrão

Variância Amostral

Duração da terapia de transfusão para dez pacientes com determinada doença:

Indivíduo	Duração (anos)	
1	4	
2	8	
3	7	
4	11	
5	5	
6	8	
7	10	
8	3	
9	5	
10	6	

Variância Amostral

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$

Duração da terapia de transfusão.

média = 6	$\left(x_i - \overline{x}\right)^2$	$x_i - \overline{x}$	Duração (anos)	Indivíduo
	7,29	-2,7	4	1
	1,69	1,3	8	2
₂ 60,1	0,09	0,3	7	3
$S^- = \frac{1}{2}$	18,49	4,3	11	4
n-1	2,89	-1,7	5	5
	1,69	1,3	8	6
	10,89	3,3	10	7
$s^2 \cong 6,678$	13,69	-3,7	3	8
~ = 0,07	2,89	-1,7	5	9
	0,49	-0,7	6	10
	60,1	Soma:		

6,7 *anos*

$$s^2 = \frac{60,1}{n-1} = \frac{60,1}{10-1}$$

$$s^2 \cong 6,678 \, anos^2$$

Desvio Padrão Amostral

Duração da terapia de transfusão

Indivíduo	Duração (anos)	$x_i - \overline{x}$	$\left(x_i - \overline{x}\right)^2$	60 1 60 1
1	4	-2,7	7,29	$s^2 = \frac{60,1}{1} = \frac{60,1}{1}$
2	8	1,3	1,69	n-1 10-1
3	7	0,3	0,09	
4	11	4,3	18,49	
5	5	-1,7	2,89	2 (70 2
6	8	1,3	1,69	$s^2 \cong 6,678 anos^2$
7	10	3,3	10,89	
8	3	-3,7	13,69	2.504
9	5	-1,7	2,89	s = 2,584 anos
10	6	-0,7	0,49	
		Soma:	60,1	

Variância Amostral (s²)

Fórmula (valores em distribuição de frequências):

$$S^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \overline{x})^{2} \cdot f_{i}}{n-1}$$

- □ fi frequência de indivíduos no intervalo i
- \Box k número de valores (linhas da tabela)

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{i} - \overline{x})^{2} \cdot f_{i}}{n-1}$$

- Exemplo: Idade dos alunos do curso.
 - · Valores em distribuição de frequências:

$$\frac{-}{x} = \frac{945}{50} = 18,9 \ anos$$

Idade dos Alunos (xi)	desvio di = xi - média	desvio ao quadrado di^2	Frequência (fi)	di^2 . (fi)
17	-1,9	3,61	9	32,49
18	-0,9	0,81	22	17,82
19	0,1	0,01	7	0,07
20	1,1	1,21	4	4,84
21	2,1	4,41	3	13,23
22	3,1	9,61	0	0
23	4,1	16,81	2	33,62
24	5,1	26,01	1	26,01
25	6,1	37,21	2	74,42
			Soma	202,5

$$s^2 = \frac{202,5}{50-1}$$

$$s^2 \cong 4,13 \, anos^2$$

$$s \cong 2,032 \, anos$$

Variância Amostral (s²)

Fórmula (valores em intervalos de classe):

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{i pm} - \overline{x})^{2} \cdot f_{i}}{n-1}$$

xi pm − ponto médio do intervalo fi − frequência de indivíduos no intervalo i

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{ipm} - \overline{x})^{2} \cdot f_{i}}{n-1}$$

- Exemplo Nível de colesterol dos funcionários do Depto. Estatística da UFMT:
 - Valores em intervalos de classe:

Nível de Colesterol (mg/100ml)	fi
180 200	2
200 250	10
250 300	6
300 350	2
Total	20

$$\bar{x} = 246,5 \, mg(100ml)$$

- Exemplo Nível de colesterol dos funcionários do Depto. Estatística da UFMT:
 - Valores em intervalos de classe:

Nível de Colesterol	Frequência (fi)	Xi pm	(Xi pm - média)	(Xi pm - média)^2	(Xi pm - média)^2.fi
180 200	2	190	-56,5	3192,25	6384,5
200 250	10	225	-21,5	462,25	4622,5
250 300	6	275	28,5	812,25	4873,5
300 350	2	325	78,5	6162,25	12324,5
Total	20				28205

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{ipm} - \overline{x})^{2} \cdot f_{i}}{n-1} = \frac{28205}{19} = 1484,47 (mg(100ml))^{2}$$

Desvio Padrão

$$\bar{x} = 246,5 \, mg(100 ml)$$

- Exemplo Nível de colesterol dos funcionários do Depto. Estatística da UFMT:
 - Valores em intervalos de classe:

Nível de Colesterol	Frequência (fi)	Xi pm	(Xi pm - média)	(Xi pm - média)^2	(Xi pm - média)^2.fi
180 200	2	190	-56,5	3192,25	6384,5
200 250	10	225	-21,5	462,25	4622,5
250 300	6	275	28,5	812,25	4873,5
300 350	2	325	78,5	6162,25	12324,5
Total	20				28205

$$s^{2} = \frac{\sum_{i=1}^{k} (x_{ipm} - \overline{x})^{2} \cdot f_{i}}{n-1} = \frac{28205}{19} = 1484,47 \qquad s^{2} = 1484,47 \rightarrow s = 38,53 mg(100ml)$$

Coeficiente de Variação

- Definição: medida relativa de dispersão
 - Utilizado para comparar os graus de dispersão de duas variáveis medidas em unidades distintas.
 - Fórmula: razão entre o desvio-padrão e a média.

$$CV = \frac{\text{desvio padrão}}{\text{média}} = \frac{s}{=}.100\%$$

Coeficiente de Variação

Ainda no exemplo (duração da terapia):

$$CV = \frac{\text{desvio padrão}}{\text{média}} = \frac{s}{x} = \frac{2,584 \, anos}{6,7 \, anos}$$

$$CV = \frac{S}{x} \cong 0.386$$

O desvio-padrão é aproximadamente 38,6% da média

Coeficiente de Variação $CV = \frac{\text{desvio padrão}}{\text{média}}$

$$CV = \frac{\text{desvio padrão}}{\text{média}}$$

- Pesos e estaturas de um grupo de pessoas:
 - Estatura: (média = 175cm; s = 5cm)
 - Peso: (média = 68kg; s = 2kg)

$$CV_{\text{Estatura}} = \frac{s}{x} = \frac{5 \text{ cm}}{175 \text{ cm}} \cong 0,0285 \cong 2,85\%$$

$$CV_{\text{Peso}} = \frac{s}{x} = \frac{2 \, kg}{68 \, kg} \cong 0,0294 \cong 2,94\%$$

Os pesos apresentam maior grau de dispersão que as alturas

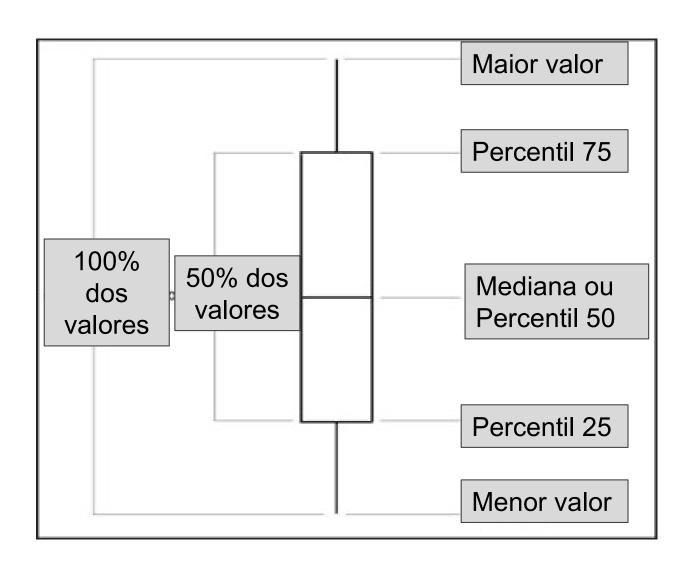
Box-Plot / Desenho esquemático

- Também conhecido como Diagrama de Caixa.
- Adequado para representar graficamente um conjunto de dados quantitativos, de forma resumida.
- Mostra as principais características do conjunto de dados: (dispersão, simetria e valores extremos).
- Ideal para comparações entre grupos.

Construindo o Box-Plot

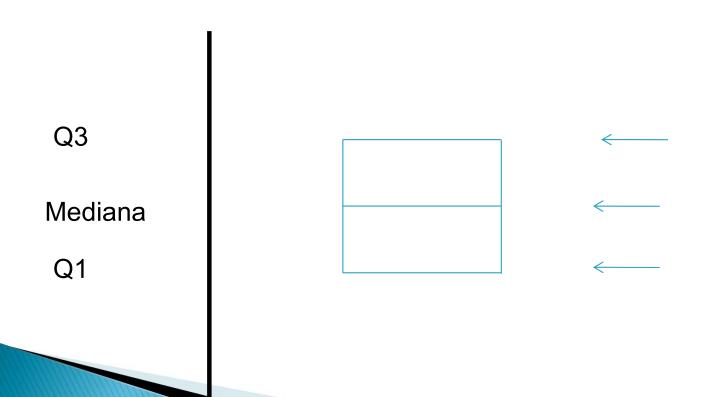
- São necessárias as seguintes medidas:
 - Mediana
 - Q1 1° quartil
 - Q3 3° quartil
 - Distância interquartílica
 - (Q3 Q1)
 - Amplitude:
 - Valor mínimo
 - Valor máximo

Representação:



Construindo o Box-Plot

- ▶ 1) Traça-se:
 - a mediana, o primeiro e o terceiro quartil:



2) Traça-se:

- Haste superior = Q3 + 1,5(Q3-Q1)
- Haste inferior = Q1 -- 1,5(Q3-Q1)

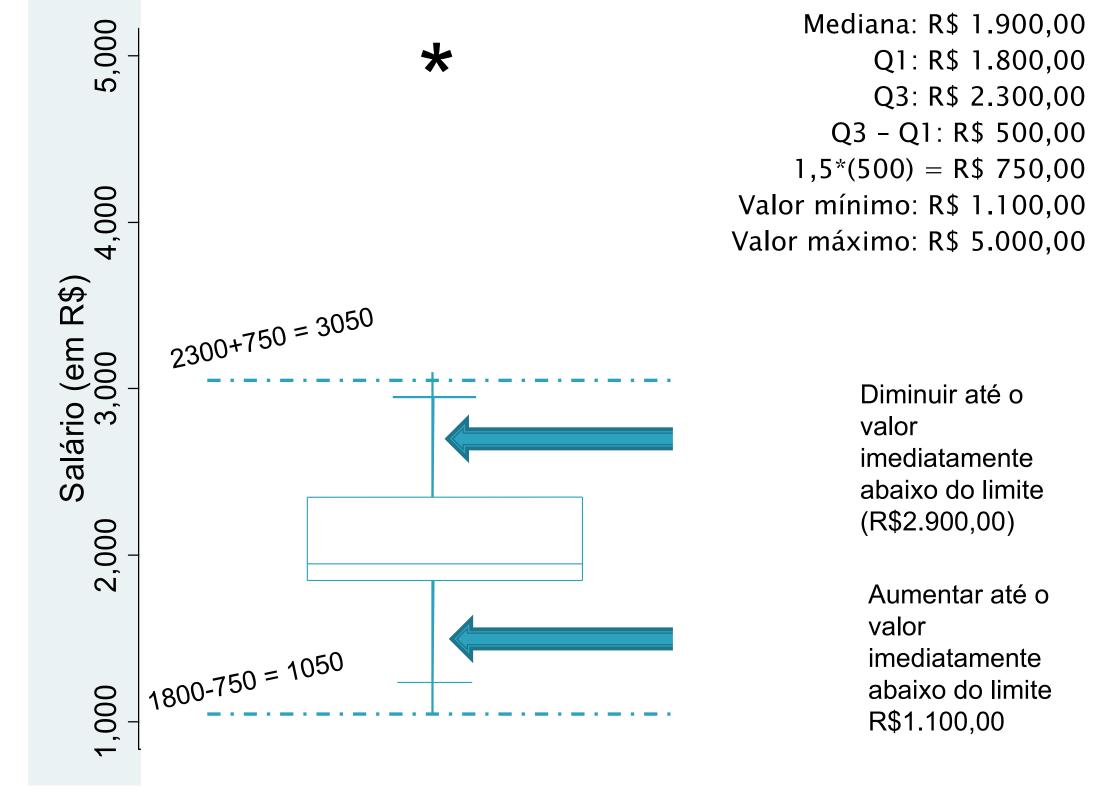


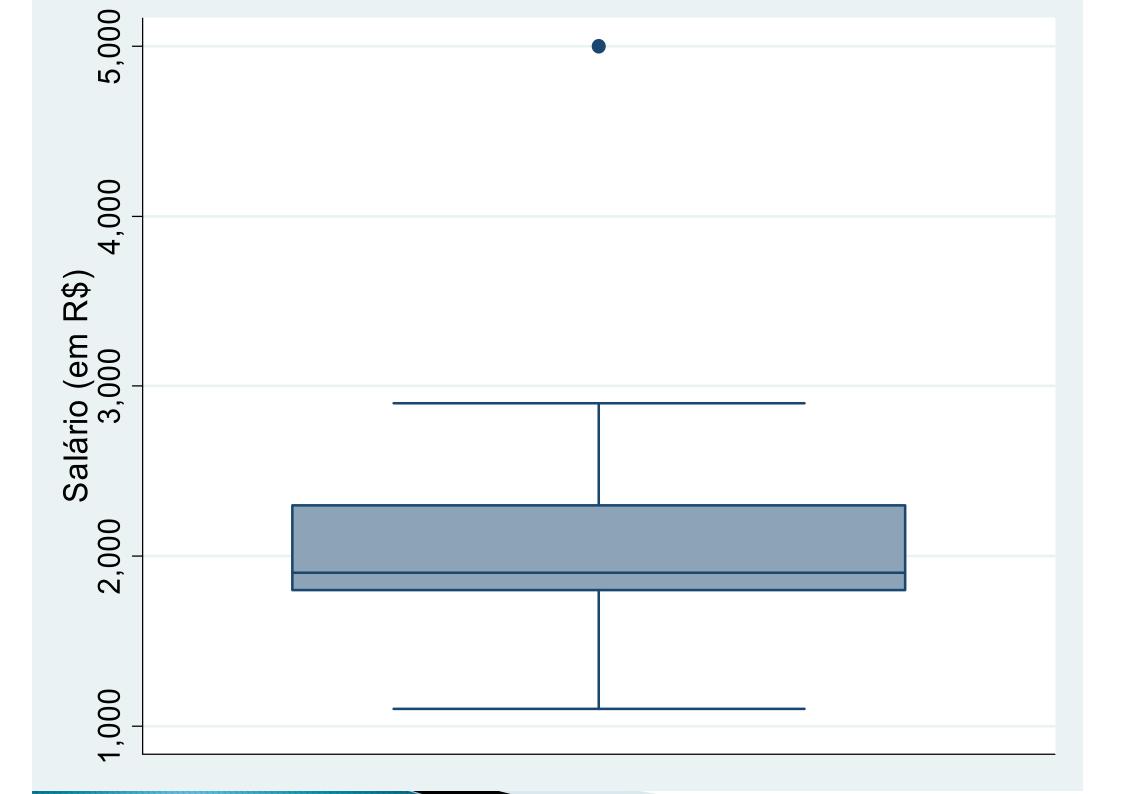
Observação: Qualquer valor acima do Limite Superior ou abaixo do Limite Inferior será considerado valor aberrante ou 'outlier' (marcado com *)

- Exemplo: Salário inicial de 15 recém-formados em Estatística (dados fictícios).
 - R\$ 1.800,00
 - R\$ 1.900,00
 - R\$ 5.000,00
 - R\$ 1.500,00
 - R\$ 1.600,00
 - R\$ 1.800,00
 - R\$ 2.000,00
 - R\$ 2.050,00

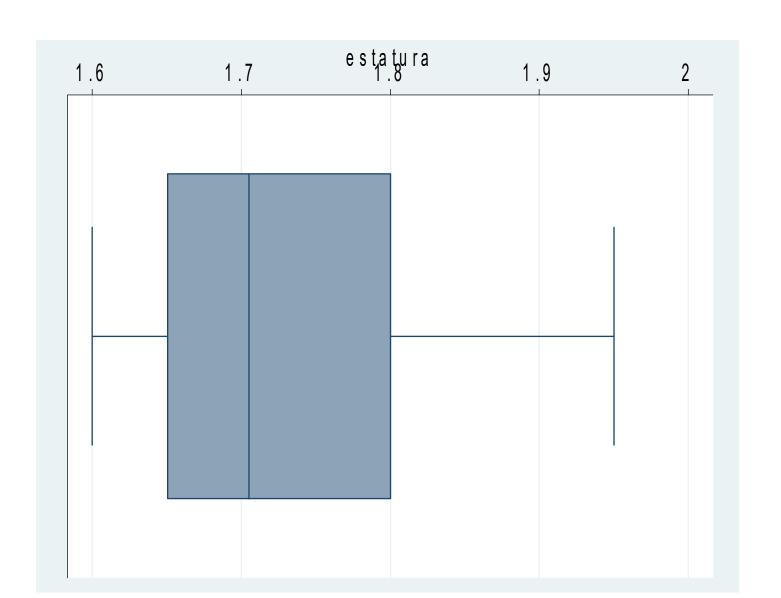
- R\$ 1.850,00
- R\$ 1.850,00
- R\$ 1.100,00
- R\$ 2.300,00
- R\$ 2.300,00
- R\$ 2.900,00
- R\$ 2.850,00

- Exemplo: Salário inicial de 15 recém-formados em Estatística (dados fictícios).
 - Mediana: R\$ 1.900,00
 - Q1: R\$ 1.800,00
 - Q3: R\$ 2.300,00
 - Q3 Q1: R\$ 500,00
 - Valor mínimo: R\$ 1.100,00
 - Valor máximo: R\$ 5.000,00

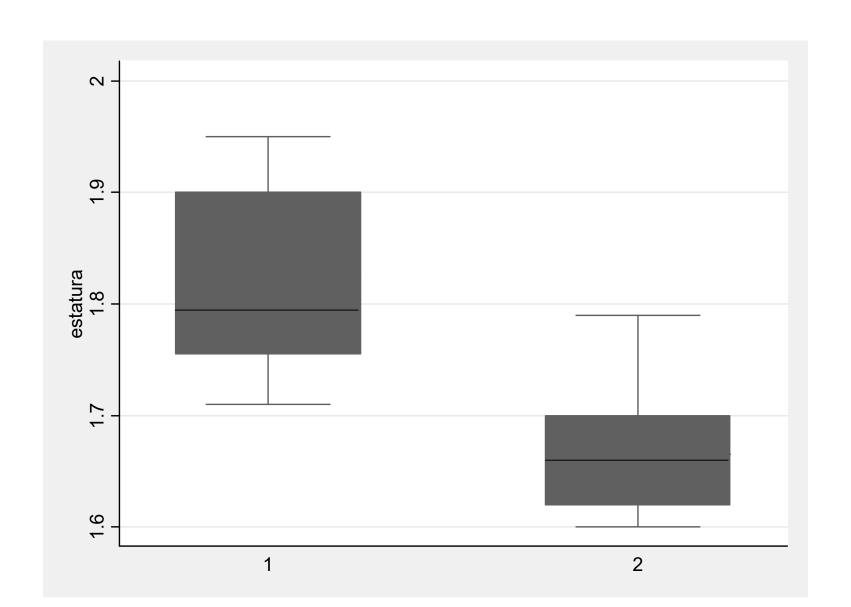


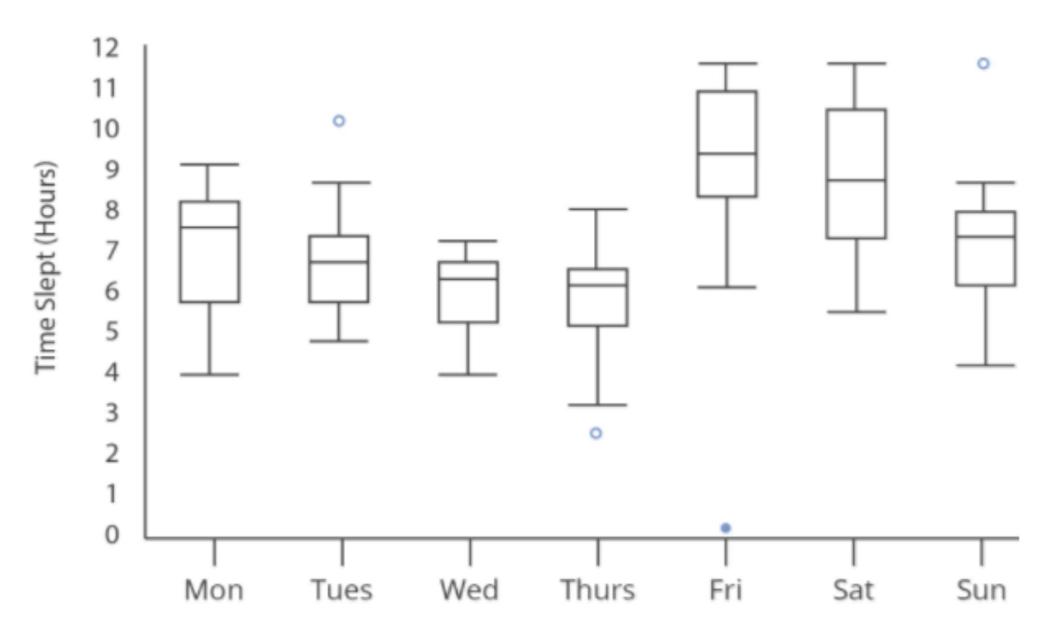


Exemplo: (estatura alunos)



Exemplo: (estatura alunos, segundo sexo)





Assimetria/Curtose

- Assimetria e Curtose
 - Complementam as medidas de posição e dispersão;
 - Fornecem uma ideia das distribuições dos dados

Formato da Curva dos dados

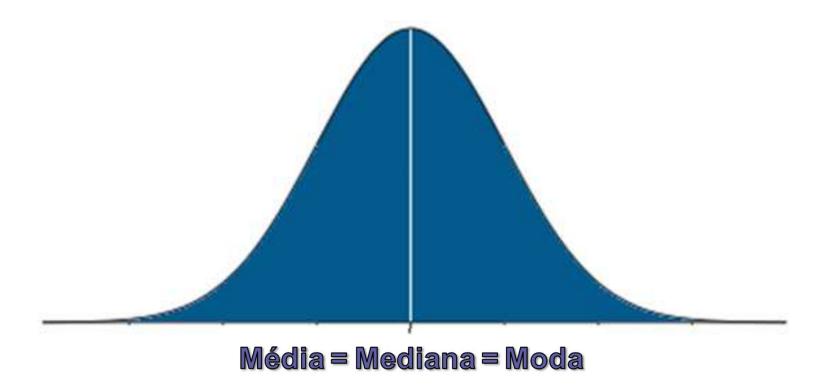
Assimetria (skewness)

- Medida que caracteriza como e quanto a distribuição de frequências se afasta da condição de simetria.
 - Simétrica
 - Assimétrica à direita (positiva)
 - Assimétrica à esquerda (negativa)

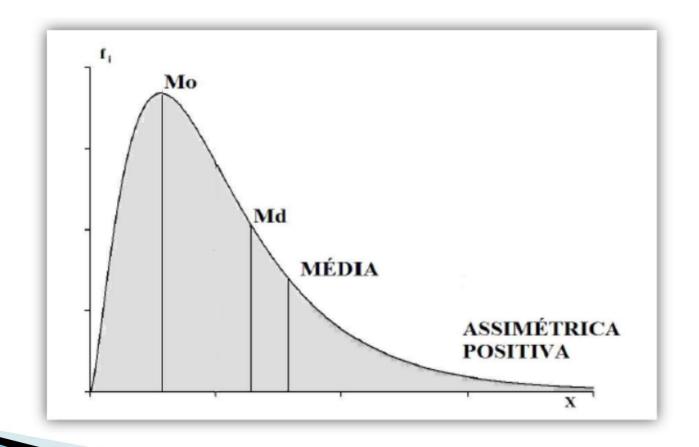
Simetria / Assimetria

Simetria:

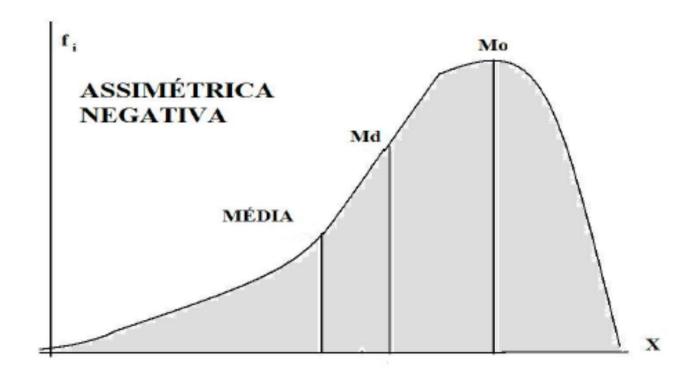
- Uma distribuição é classificada como simétrica se:
 - Média = Mediana = Moda



- Assimétrica direita positiva
 - Média > Mediana > Moda



- Assimétrica esquerda negativa
 - Moda > Mediana > Média



- Medidas que caracterizam como e quanto a distribuição de frequências se afasta da condição de simetria.
- Há algumas formas para se calcular:
 - Coeficiente de assimetria de Pearson:

$$A = \frac{3(x - Med)}{x - Med}$$

$$x = média$$

$$Med = mediana$$

$$s = desvio padrão$$

$$A = \frac{3(x - Med)}{s}$$

- Coeficiente de assimetria de Pearson:
- Critérios para classificação:
 - -0.15 < A < 0.15 \rightarrow distribuição simétrica
 - $0.15 \le A \le 1.0$ \rightarrow Assimetria moderada (direita)
 - $-1,0 \le A \le -0,15$ \rightarrow Assimetria moderada (esquerda)
 - A > 1,0 \rightarrow Assimetria forte (direita)
 - A < -1,0 \rightarrow Assimetria forte (esquerda)

$$A = \frac{3(x - Med)}{s}$$

Quantidade de células T CD4/mm³ - 10 pacientes

525, 556, 576, 658, 689, 704, 771, 791, 847, 884

$$\bar{x} = 700,1$$
 $Med = 696,5$
 $s = 123,57$

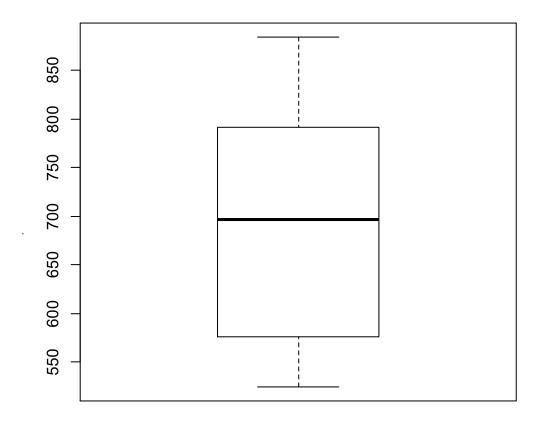
$$A = \frac{3(x - Med)}{s} = \frac{3(700, 1 - 696, 5)}{123, 57} = \frac{10, 8}{123, 57} = 0,087$$

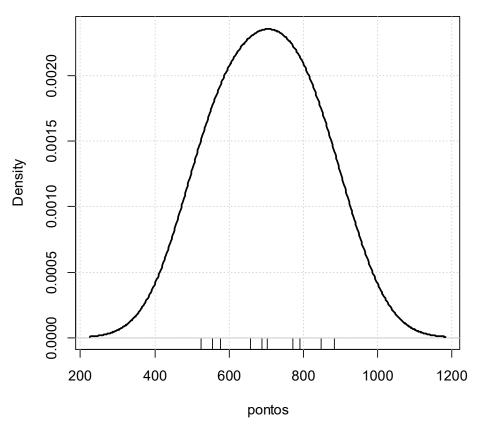
simétrica

Gráficos – dados simétricos:

Box-Plot

Gráfico de Densidade



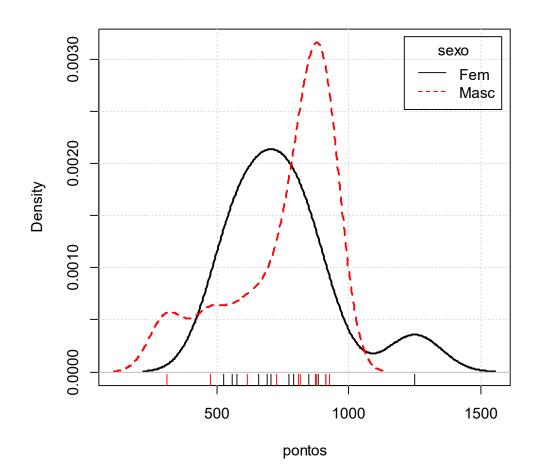


Gráficos – dados assimétricos

Box-Plot

o 22 pontos 8 0 Fem Masc sexo

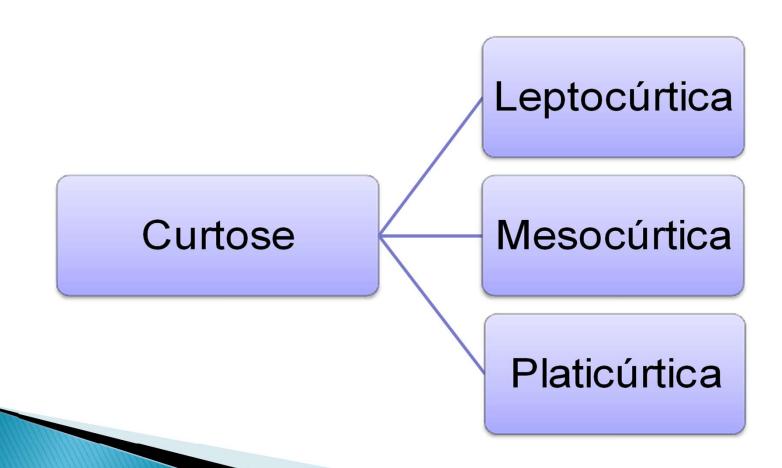
Gráfico de Densidade

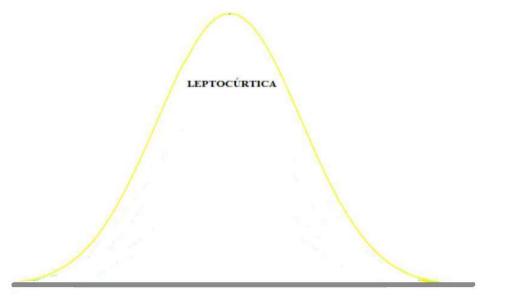


- Também conhecida como sendo o grau de <u>achatamento</u> de uma distribuição.
- Caracteriza a dispersão em uma distribuição

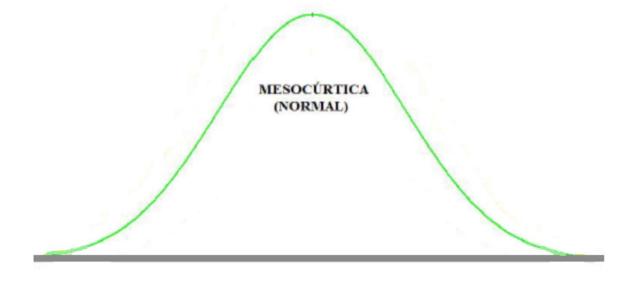
Fórmula:
$$k = 0.263 - \frac{Q_3 - Q_1}{2(P_{90} - P_{10})}$$

Classificação segundo achatamento:

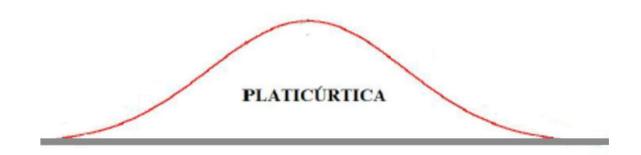




- Classificação segundo achatamento:
 - Leptocúrtica: curva fechada com dados fortemente concentrados ao redor do centro

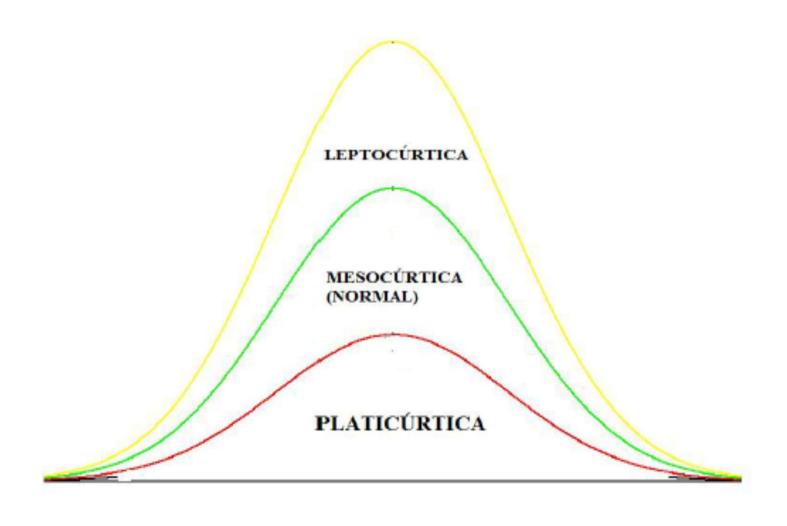


- Classificação segundo achatamento:
 - Mesocúrtica: curva normal dados razoavelmente centrados em torno do centro



- Classificação segundo achatamento:
 - Platicúrtica: distribuição com dados pouco concentrados em torno do centro.

Classificação segundo achatamento:



Quantidade de células T CD4/mm³ - 10 pacientes

525, 556, 576, 658, 689, 704, 771, 791, 847, 884
$$Q1 = pos_{2,75} = pos_2 + 0.75(pos_3 - pos_2) = 571$$

$$Q3 = pos_{8,25} = pos_8 + 0.25(pos_9 - pos_8) = 805$$

$$P10 = pos_{1,1} = pos_1 + 0.1(pos_2 - pos_1) = 528.1$$

$$P90 = pos_{9,9} = pos_9 + 0.9(pos_{10} - pos_9) = 880.3$$

$$k = 0.263 - \frac{Q_3 - Q_1}{2(P_{90} - P_{10})} = 0.263 - \frac{805 - 571}{2(880, 3 - 528, 1)} = 0.263 - \frac{234}{704, 4}$$

$$k = 0.263 - 0.332 = -0.069 \Rightarrow Platicúrtica$$

Bibliografia

- Arango HG. Bioestatística Teórica e Computacional. Guanabara Koogan. 2ª ed. Rio de Janeiro, 2005.
- Bergamaschi DP. Bioestatística (Apostila Graduação) FSP/USP, 2010.
- Callegari-Jacques SM. Bioestatística Princípios e Aplicações.
 Artmed. Porto Alegre, 2003.
- ENCE Escola Nacional de Ciências Estatísticas www.ence.ibge.gov.br
- Latorre MRDO. Bioestatística (Apostila graduação) FSP/USP, 2009.
- Magalhães MN; Lima ACP. Noções de Probabilidade e Estatística. EDUSP. São Paulo, 2002.
- Vieira S. Introdução à Bioestatística. ELSEVIER. 4ª ed. Rio de Janeiro, 2010.